Browse by author
Lookup NU author(s): Professor David XieORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
Breadfruit starch was subjected to heat-moisture treatment (HMT) at different moisture content (MC). HMT did not apparently change the starch granule morphology but decreased the molecular weight and increased the amylose content. With increased MC, HMT transformed the crystalline structure (B → A + B → A) and decreased the relative crystallinity. With ≥25% MC, the scattering peak at ca. 0.6 nm−1 disappeared, suggesting the lamellar structure was damaged. Compared with native starch, HMT-modified samples showed greater thermostability. Increased MC contributed to a higher pasting temperature, lower viscosity, and no breakdown. The pasting temperature of native and HMT samples ranged from 68.8 to 86.2 °C. HMT increased the slowly-digestible starch (SDS) and resistant starch (RS) contents. The SDS content was 13.24% with 35% MC, which was 10.25% higher than that of native starch. The increased enzyme resistance could be ascribed to the rearrangement of molecular chains and more compact granule structure.
Author(s): Tan X, Li X, Chen L, Xie F, Li L, Huang J
Publication type: Article
Publication status: Published
Journal: Carbohydrate Polymers
Year: 2017
Volume: 161
Pages: 286-294
Print publication date: 01/04/2017
Online publication date: 09/01/2017
Acceptance date: 06/01/2017
Date deposited: 31/08/2023
ISSN (print): 0144-8617
ISSN (electronic): 1879-1344
Publisher: Elsevier
URL: https://doi.org/10.1016/j.carbpol.2017.01.029
DOI: 10.1016/j.carbpol.2017.01.029
Altmetrics provided by Altmetric