Browse by author
Lookup NU author(s): Professor David XieORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
This work investigates the effect of different anti-solvents (water, ethanol, or both water and ethanol) on the characteristics of cellulose dissolved and then generated from 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). Compared with original microcrystalline cellulose (MCC) granules, all regenerated celluloses showed a homogeneous, agglomerated macromorphology and had its crystalline structure transformed from original cellulose I to cellulose II. The regenerated cellulose using water (43.3%) had a higher degree of crystallinity than that using ethanol (13.5%), and a degree of crystallinity of 21.3% was obtained when an ethanol–water–ethanol treatment method was used. SAXS and FTIR results indicate that water as an anti-solvent could promote the rearrangement of cellulose molecular chains and the rebuilding of an ordered aggregated structure. Moreover, the regenerated cellulose with water showed better thermal stability than that of the samples regenerated using ethanol. Thus, our results suggest that the reconstitution of cellulose molecules during regeneration with various anti-solvents can affect the multiscale structures and properties of cellulose.
Author(s): Tan X, Chen L, Li X, Xie F
Publication type: Article
Publication status: Published
Journal: International Journal of Biological Macromolecules
Year: 2019
Volume: 124
Pages: 314-320
Print publication date: 01/03/2019
Online publication date: 16/11/2018
Acceptance date: 14/11/2018
Date deposited: 23/05/2023
ISSN (print): 0141-8130
ISSN (electronic): 1879-0003
Publisher: Elsevier
URL: https://doi.org/10.1016/j.ijbiomac.2018.11.138
DOI: 10.1016/j.ijbiomac.2018.11.138
Altmetrics provided by Altmetric