Browse by author
Lookup NU author(s): Dr Abdulhamid Al-Abduljabbar, Professor Geoff Gibson
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Fatigue behavior of polyvinylidiene fluoride (PVDF) pipes is investigated under low temperatures to characterize the temperature effects. The analysis included experimental evaluation of fatigue life for test samples taken directly from the manufactured pipes used for service as opposed to compression molded compact tension samples used in previous works. In this test, short sections from an extruded pipe are used to better represent the material service conditions. A compact test chamber was designed to control the test temperature. The samples were loaded into the test rig and allowed to cool for 30 min ensuring a constant and even temperature distribution. Cooling was done in a sealed test chamber using carbon dioxide gas. Two test temperatures of -20 °C and -10 °C were chosen since they represent typical temperature during which failure occurs during actual pipe service in cold environments. Fractured surfaces were inspected and fatigue data were analyzed using a standard procedure for calculation of fatigue life with a semi-elliptical surface crack assumption was performed; from which parameters of the Paris law for fatigue fracture were obtained. Comparing the results with previous works it is found that they capture the trend of the PVDF material behavior for high temperature. © 2007 Elsevier Ltd. All rights reserved.
Author(s): Al-Abduljabbar A, Melve B, Dodds N, Gibson AG
Publication type: Article
Publication status: Published
Journal: Engineering Failure Analysis
Year: 2007
Volume: 14
Issue: 8
Pages: 1594-1604
Print publication date: 01/12/2007
ISSN (print): 1350-6307
ISSN (electronic): 1873-1961
Publisher: Pergamon
URL: http://dx.doi.org/10.1016/j.engfailanal.2006.11.076
DOI: 10.1016/j.engfailanal.2006.11.076
Altmetrics provided by Altmetric