Toggle Main Menu Toggle Search

Open Access padlockePrints

Microbial fuel cell performance with non-Pt cathode catalysts

Lookup NU author(s): Professor Eileen Yu, Emeritus Professor Keith Scott

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Various cathode catalysts prepared from metal porphyrines and phthalocyanines were examined for their oxygen reduction activity in neutral pH media. Electrochemical studies were carried out with metal tetramethoxyphenylporphyrin (TMPP), CoTMPP and FeCoTMPP, and metal phthalocyanine (Pc), FePc, CoPc and FeCuPc, supported on Ketjenblack (KJB) carbon. Iron phthalocyanine supported on KJB (FePc-KJB) carbon demonstrated higher activity towards oxygen reduction than Pt in neutral media. The effect of carbon substrate was investigated by evaluating FePc on Vulcan XC carbon (FePcVC) versus Ketjenblack carbon. FePc-KJB showed higher activity than FePcVC suggesting the catalyst activity could be improved by using carbon substrate with a higher surface area. With FePc-KJB as the MFC cathode catalyst, a power density of 634 mW m-2 was achieved in 50 mM phosphate buffer medium at pH 7, which was higher than that obtained using the precious-metal Pt cathode (593 mW m-2). Under optimum operating conditions (i.e. using a high surface area carbon brush anode and 200 mM PBM as the supporting electrolyte with 1 g L-1 acetate as the substrate), the power density was increased to 2011 mW m-2. This high power output indicates that MFCs with low cost metal macrocycles catalysts is promising in further practical applications. © 2007 Elsevier B.V. All rights reserved.


Publication metadata

Author(s): Yu EH, Cheng S, Scott K, Logan B

Publication type: Article

Publication status: Published

Journal: Journal of Power Sources

Year: 2007

Volume: 171

Issue: 2

Pages: 275-281

ISSN (print): 0378-7753

ISSN (electronic): 1873-2755

Publisher: Elsevier

URL: http://dx.doi.org/10.1016/j.jpowsour.2007.07.010

DOI: 10.1016/j.jpowsour.2007.07.010


Altmetrics

Altmetrics provided by Altmetric


Share