Toggle Main Menu Toggle Search

Open Access padlockePrints

Uphill diffusion of ultralow-energy boron implants in preamorphized silicon and silicon-on-insulator

Lookup NU author(s): Professor Nick Cowern

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Redistribution during annealing of low-energy boron (B) implants in silicon on insulator (SOI) structures and in bulk Si has been investigated by comparing secondary ion mass spectrometry (SIMS) and simulated profiles. All the samples have been preamorphized with Ge at different implantation energies in order to investigate the effects of the position of the damage on B diffusion. Different B doses in the range between 2× 1013 and 2× 1015 cm-2 and annealing temperatures between 700 and 1100 °C have been investigated. All SIMS profiles show a B pileup in the first few nanometers of the Si matrix in proximity of the Si surface. The results of our simulations, performed on samples implanted at different doses (below and above the solid solubility), indicate that the B redistribution upon annealing can be explained with a simple model which considers the presence of traps in the surface region, without considering any asymmetric behavior of the dopant diffusion. The sink region is a few monolayers (1-2 nm) for doses of 2× 1013 and 2× 1014 cm-2, and it extends to about 7 nm for the highest dose of 2× 1015 cm-3, in the region of very high B concentration where precipitates and clusters shrink the incoming B atoms. For the two lowest B doses, the amount of B trapped at the surface is maximum at temperatures around 800 °C, when more than 80% of the implanted dopant is made immobile and electrically inactive. In our experimental conditions, i.e., preamorphization performed with constant dose and different implantation energies, the amount of trapped B increases with reducing the depth of the amorphous layer and it is higher in the bulk Si than in SOI. © 2007 American Institute of Physics.


Publication metadata

Author(s): Ferri M, Solmi S, Giubertoni D, Bersani M, Hamilton JJ, Kah M, Kirkby K, Collart EJH, Cowern NEB

Publication type: Article

Publication status: Published

Journal: Journal of Applied Physics

Year: 2007

Volume: 102

Issue: 10

Pages: -

ISSN (print): 0021-8979

ISSN (electronic): 1520-8850

Publisher: American Institute of Physics

URL: http://dx.doi.org/10.1063/1.2812676

DOI: 10.1063/1.2812676


Altmetrics

Altmetrics provided by Altmetric


Share