Browse by author
Lookup NU author(s): Dr Robert Tenzer
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The main problem of the rigorous definition of the orthometric height is the evaluation of the mean value of the Earth's gravity acceleration along the plumbline within the topography. To find the exact relation between rigorous orthometric and Molodensky's normal heights, the mean gravity is decomposed into: the mean normal gravity, the mean values of gravity generated by topographical and atmospheric masses, and the mean gravity disturbance generated by the masses contained within geoid. The mean normal gravity is evaluated according to Somigliana-Pizzetti's theory of the normal gravity field generated by the ellipsoid of revolution. Using the Bruns formula, the mean values of gravity along the plumbline generated by topographical and atmospheric masses can be computed as the integral mean between the Earth's surface and geoid. Since the disturbing gravity potential generated by masses inside the geoid is harmonic above the geoid, the mean value of the gravity disturbance generated by the geoid is defined by applying the Poisson integral equation to the integral mean. Numerical results for a test area in the Canadian Rocky Mountains show that the difference between the rigorously defined orthometric height and the Molodensky normal height reaches ∼0.5 m. © Springer-Verlag Berlin Heidelberg 2005.
Author(s): Tenzer R, Vanicek P, Santos M, Featherstone WE, Kuhn M
Publication type: Article
Publication status: Published
Journal: Journal of Geodesy
Year: 2005
Volume: 79
Issue: 1-3
Pages: 82-92
ISSN (print): 0949-7714
ISSN (electronic): 1432-1394
Publisher: Springer
URL: .httP://dx.doi.org/10.1007/s00190-005-0445-2
DOI: 10.1007/s00190-005-0445-2
Altmetrics provided by Altmetric