Toggle Main Menu Toggle Search

Open Access padlockePrints

The hyalectan degrading ADAMTS-1 enzyme is expressed by osteoblasts and up-regulated at regions of new bone formation

Lookup NU author(s): Dr Seth Racey, Dr Mark Birch

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

During bone formation, there are numerous pivotal changes in the interrelationships between osteoblasts and molecules of the extracellular matrix (ECM). Consequently, the mechanisms that underlie the temporal and spatial distribution of ECM molecules in bone are of considerable interest in understanding its formation. A subfamily of a disintegrin and metalloproteinase (ADAMs) has been identified, which contain thrombospondin-like motifs (ADAMTS), and can break down several ECM molecules. Using reversed transcribed PCR, we identified ADAMTS-1, -4 and -5 mRNA expression in cultures of rat osteoblasts treated with ascorbic acid, beta-glycerophosphate and dexamethasone, molecules known to drive osteoblast differentiation. Of these, ADAMTS-1 followed most closely the osteogenic marker osteocalcin during in vitro mineralisation. Consequently, we studied, in detail, protein expression of ADAMTS-1 during in vitro osteogenesis together with ADAMTS-1 immunohistochemistry staining of sections from 2- and 10-day-old rat femur. Western analysis of osteoblast proteins showed ADAMTS-1 products that correspond well with both full-length and furin-processed species. In the ECM laid down by osteoblasts, only the mature secreted protein (approximately 90 kDa) and its accumulation during the later stages of osteogenesis in vitro were noticed. Furthermore, immunostaining with an antibody recognising ADAMTS-1 demonstrated strong expression around mineralised nodules and intense focal staining of putative new areas of nodule formation in vitro. Finally, immunohistochemistry of 2- and 10-day-old rat femur localised ADAMTS-1 protein to regions associated with osteogenesis. These data show that ADAMTS-1 protein accumulates in osteoblast ECM during differentiation. Furthermore, the focalised expression of ADAMTS-1 in regions of osteogenesis, both in vitro and in vivo, implicates this multifunctional protein to be involved in mineralised nodule and bone formation. © 2004 Elsevier Inc. All rights reserved.


Publication metadata

Author(s): Lind T, McKie N, Wendel M, Racey SN, Birch MA

Publication type: Article

Publication status: Published

Journal: Bone

Year: 2005

Volume: 36

Issue: 3

Pages: 408-417

Print publication date: 01/03/2005

ISSN (print): 8756-3282

ISSN (electronic): 1873-2763

Publisher: Elsevier

URL: http://dx.doi.org/10.1016/j.bone.2004.11.008

DOI: 10.1016/j.bone.2004.11.008

PubMed id: 15777654


Altmetrics

Altmetrics provided by Altmetric


Share