Browse by author
Lookup NU author(s): Gavin Pell, Emeritus Professor Harry Gilbert
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Esterases and deacetylases active on carbohydrate ligands have been classified into 14 families based upon amino acid sequence similarities. Enzymes from carbohydrate esterase family seven (CE-7) are unusual in that they display activity towards both acetylated xylooligosaccharides and the antibiotic, cephalosporin C. The 1.9Å structure of the multifunctional CE-7 esterase (hereinafter CAH) from Bacillus subtilis 168 reveals a classical α/β hydrolase fold encased within a 32 hexamer. This is the first example of a hexameric α/β hydrolase and is further evidence of the versatility of this particular fold, which is used in a wide variety of biological contexts. A narrow entrance tunnel leads to the centre of the molecule, where the six active-centre catalytic triads point towards the tunnel interior and thus are sequestered away from cytoplasmic contents. By analogy to self-compartmentalising proteases, the tunnel entrance may function to hinder access of large substrates to the poly-specific active centre. This would explain the observation that the enzyme is active on a variety of small, acetylated molecules. The structure of an active site mutant in complex with the reaction product, acetate, reveals details of the putative oxyanion binding site, and suggests that substrates bind predominantly through non-specific contacts with protein hydrophobic residues. Protein residues involved in catalysis are tethered by interactions with protein excursions from the canonical α/β hydrolase fold. These excursions also mediate quaternary structure maintenance, so it would appear that catalytic competence is only achieved on protein multimerisation. We suggest that the acetyl xylan esterase (EC 3.1.1.72) and cephalosporin C deacetylase (EC 3.1.1.41) enzymes of the CE-7 family represent a single class of proteins with a multifunctional deacetylase activity against a range of small substrates. © 2003 Elsevier Science Ltd. All rights reserved.
Author(s): Vincent F, Charnock SJ, Verschueren KHG, Turkenburg JP, Scott DJ, Offen WA, Roberts S, Pell G, Gilbert HJ, Davies GJ, Brannigan JA
Publication type: Article
Publication status: Published
Journal: Journal of Molecular Biology
Year: 2003
Volume: 330
Issue: 3
Pages: 593-606
ISSN (print): 0022-2836
ISSN (electronic): 1089-8638
Publisher: Academic Press
URL: http://dx.doi.org/10.1016/S0022-2836(03)00632-6
DOI: 10.1016/S0022-2836(03)00632-6
PubMed id: 12842474
Altmetrics provided by Altmetric