Browse by author
Lookup NU author(s): Ashley Willis, Professor Carlo Barenghi
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
We study the magneto-rotational instability of an incompressible flow which rotates with angular velocity Ω(r) = a + b/r3 where r is the radius and a and b are constants. We find that an applied magnetic field destabilises the flow, in agreement with the results of Rüdiger & Zhang (2001). We extend the investigation in the region of parameter space which is Rayleigh stable. We also study the instability at values of magnetic Praudtl number which are much larger and smaller than Rüdiger & Zhang. Large magnetic Prandtl numbers are motivated by their possible relevance in the central region of galaxies (Kulsrud & Anderson 1992). In this regime we find that increasing the magnetic Prandtl number greatly enhances the instability; the stability boundary drops below the Rayleigh line and tends toward the solid body rotation line. Very small magnetic Prandtl numbers are motivated by the current MHD dynamo experiments performed using liquid sodium and gallium. Our finding in this regime confirms Rüdiger & Zhang's conjecture that the linear magneto-rotational instability and the nonlinear hydrodynamical instability (Richard & Zahn 1999) take place at Reynolds numbers of the same order of magnitude.
Author(s): Willis AP, Barenghi CF
Publication type: Article
Publication status: Published
Journal: Astronomy and Astrophysics
Year: 2002
Volume: 388
Issue: 2
Pages: 688-691
ISSN (print): 0004-6361
ISSN (electronic): 1432-0746
Publisher: EDP Sciences
URL: http://dx.doi.org/10.1051/0004-6361:20020510
DOI: 10.1051/0004-6361:20020510
Altmetrics provided by Altmetric