Browse by author
Lookup NU author(s): Dr John Favier, M Abbaspour-Fard, Martin Kremmer
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
In this paper axisymmetrical particles are modeled as multisphere discrete elements using a method in which particles are represented by overlapping spheres, fixed rigidly with respect to a local coordinate system. Contact detection is sphere-based and the resultant forces are transformed to the particle centroid to calculate the particle motion using standard discrete element method conventions. The multisphere method was used to model discharge of ellipse-shaped particles through an orifice in a flat-bottomed hopper and the simulations compared with physical experiments at the same scale. There was good agreement between the flow behavior of the simulated and physical particle assemblies for all orifice sizes. The rate of discharge and the vertical velocity profiles in the region of converging flow determined for the simulated and physical flows were in close agreement for flow from the larger orifices. A similar relationship between frequency of arch formation, particle mean diameter, and orifice diameter as for spheres was observed.
Author(s): Favier JF, Abbaspour-Fard MH, Kremmer M
Publication type: Article
Publication status: Published
Journal: Journal of Engineering Mechanics
Year: 2001
Volume: 127
Issue: 10
Pages: 971-977
ISSN (print): 0733-9399
ISSN (electronic): 1943-7889
Publisher: http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:10(971)
URL: http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:10(971)
DOI: 10.1061/(ASCE)0733-9399(2001)127:10(971)
Altmetrics provided by Altmetric