Browse by author
Lookup NU author(s): Alan Dobson, Professor Tony Roskilly
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The use of self-organizing fuzzy logic controllers (SOFLCs) in high-speed multi-variable systems has been largely limited by the high number of rules generated, and by the application specific nature of the learning process. This paper concerns the development of a more generically applicable form of an SOFLC that uses a limited rule base of predetermined size, resulting in improved generalization properties and a reduction in the processing time. A simulation study on a four-valve water hydraulic actuator for a subsea robotic arm shows how this method can be applied to system modeling, the resulting 48-rule fuzzy model then providing the necessary process model for training the SOFLC. Using this fuzzy model the SOFLC was able to tune a set of 12 rules to control the actuator and then to adapt these rules to compensate for a simulated leak of hydraulic fluid.
Author(s): Jones E, Dobson A, Roskilly AP
Publication type: Article
Publication status: Published
Journal: Proceedings of the Institution of Mechanical Engineers. Part I, Journal of systems and control engineering
Year: 2000
Volume: 214
Issue: 5
Pages: 371-382
ISSN (print): 0959-6518
ISSN (electronic): 2041-3041
Publisher: Sage Publications
URL: http://dx.doi.org/10.1243/0959651001540726
DOI: 10.1243/0959651001540726
Altmetrics provided by Altmetric