Browse by author
Lookup NU author(s): Professor Anthony O'Donnell
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The effect of the nematofauna on the microbiology and soil nitrogen status was studied in 6 major European grassland types (Northern tundra (Abisko, Sweden), Atlantic heath (Otterburn, UK), wet grassland (Wageningen, Netherlands), semi-natural temperate grassland (Linden, Germany), East European steppe (Pusztaszer, Hungary) and Mediterranean garigue (Mt. Vermion, Greece). To extend the range of temperature and humidity experienced locally during the investigation period, soil microclimates were manipulated, and at each site 14 plots were established representing selected combinations of 6 temperature and 6 moisture levels. The investigated Soils divided into two groups: mineral grassland soils that were precipitation fed (garigue, wet grassland, seminatural grassland, steppe), and wet organic soils that were groundwater fed (heath, tundra). Effects of the nematofauna on the microflora were found in the mineral soils, where correlations among nematode metabolic activity as calculated from a metabolic model, and microbial activity parameters as indicated by Biolog and ergosterol measurements, were significantly positive. Correlations with bacterial activity were stronger and more consistent. Microbial parameters, in turn, were significantly correlated with the size of the soil nitrogen pools NH4, NO3, and Norganic. Furthermore, model results suggested that there were remarkable direct effects of nematodes on soil nitrogen status. Calculated monthly nematode excretion contributed temporarily up to 27% of soluble soil nitrogen, depending on the site and the microclimate. No significant correlation among nematodes and microbial parameters, or nitrogen pools, were found in the wet organic soils. The data show that the nematofauna can under favourable conditions affect soil nitrogen status in mineral grassland soils both directly by excretion of N, and indirectly by regulating microbial activity. This suggests that the differences in nitrogen availability observed in such natural grasslands partly reflect differences in the activity of their indigenous nematofauna.
Author(s): Ekschmitt K, Bakonyi G, Bongers M, Bongers T, Bostrom S, Dogan H, Harrison A, Kallimanis A, Nagy P, O'Donnell AG, Sohlenius B, Stamou GP, Wolters V
Publication type: Article
Publication status: Published
Journal: Plant and Soil
Year: 1999
Volume: 212
Issue: 1
Pages: 45-61
Print publication date: 01/01/1999
ISSN (print): 0032-079X
ISSN (electronic): 1573-5036
Publisher: Springer Netherlands
URL: http://dx.doi.org/10.1023/A:1004682620283
DOI: 10.1023/A:1004682620283
Altmetrics provided by Altmetric