Browse by author
Lookup NU author(s): Dr Stephan Gruber
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The cohesin complex is essential for sister chromatid cohesion during mitosis. Its Smc1 and Smc3 subunits are rod-shaped molecules with globular ABC-like ATPases at one end and dimerization domains at the other connected by long coiled coils. Smc1 and Smc3 associate to form V-shaped heterodimers. Their ATPase heads are thought to be bridged by a third subunit, Scc1, creating a huge triangular ring that could trap sister DNA molecules. We address here whether cohesin forms such rings in vivo. Proteolytic cleavage of Scc1 by separase at the onset of anaphase triggers its dissociation from chromosomes. We show that N- and C-terminal Scc1 cleavage fragments remain connected due to their association with different heads of a single Smc1/Smc3 heterodimer. Cleavage of the Smc3 coiled coil is sufficient to trigger cohesin release from chromosomes and loss of sister cohesion, consistent with a topological association with chromatin.
Author(s): Gruber S; Haering CH; Nasmyth K
Publication type: Article
Publication status: Published
Journal: Cell
Year: 2003
Volume: 112
Issue: 6
Pages: 765-777
ISSN (print): 0092-8674
ISSN (electronic): 1097-4172
Publisher: Cell Press
URL: http://dx.doi.org/10.1016/S0092-8674(03)00162-4
DOI: 10.1016/S0092-8674(03)00162-4
Notes: Comparative Study Journal Article Research Support, Non-U.S. Gov't United States
Altmetrics provided by Altmetric