Browse by author
Lookup NU author(s): Professor Volker StraubORCiD, Dr Ana TopfORCiD
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
© 2024 The Author(s). Muscle & Nerve published by Wiley Periodicals LLC. Introduction/Aims: Heterogeneous nuclear ribonucleoprotein A1 is involved in nucleic acid homeostatic functions. The encoding gene HNRNPA1 has been associated with several neuromuscular disorders including an amyotrophic lateral sclerosis-like phenotype, distal hereditary motor neuropathy, multisystem proteinopathy, and various myopathies. We report two unrelated individuals with monoallelic stop loss variants affecting the same codon of HNRNPA1. Methods: Two individuals with unsolved juvenile-onset myopathy were enrolled under approved institutional protocols. Phenotype data were collected and genetic analyses were performed, including whole-exome sequencing (WES). Results: The two probands (MNOT002-01 and K1440-01) showed a similar onset of slowly progressive extremity and facial weakness in early adolescence. K1440-01 presented with facial weakness, winged scapula, elevated serum creatine kinase (CK) levels, and mild neck weakness. MNOT002-01 also exhibited elevated CK levels along with facial weakness, cardiomyopathy, respiratory dysfunction, pectus excavatum, a mildly rigid spine, and loss of ambulation. On quadriceps muscle biopsy, K1440-01 displayed rounded myofibers, mild variation in fiber diameter, and type 2 fiber hypertrophy, while MNOT002-01 displayed rimmed vacuoles. Monoallelic stop-loss variants in HNRNPA1 were identified for both probands: c.1119A>C p.*373Tyrext*6 (K1440-01) and c.1118A>C p.*373Serext*6 (MNOT002-01) affect the same codon and are both predicted to lead to the addition of six amino acids before termination at an alternative stop codon. Discussion: Both stop-loss variants in our probands are likely pathogenic. Our findings contribute to the disease characterization of pathogenic variants in HNRNPA1. This gene should be screened in clinical diagnostic testing of unsolved cases of sporadic or dominant juvenile-onset myopathy.
Author(s): Turner J, Bruels CC, Daugherty AL, Estrella EA, Stafki S, Syeda SB, Littel HR, Pais L, Ganesh VS, Lidov HGW, Paine SML, Maddison P, Harrison RE, Straub V, Ghosh PS, Pacak CA, Kunkel LM, Draper I, Topf A, Kang PB
Publication type: Article
Publication status: Published
Journal: Muscle and Nerve
Year: 2024
Pages: ePub ahead of print
Online publication date: 28/07/2024
Acceptance date: 14/07/2024
Date deposited: 13/08/2024
ISSN (print): 0148-639X
ISSN (electronic): 1097-4598
Publisher: John Wiley and Sons Inc.
URL: https://doi.org/10.1002/mus.28214
DOI: 10.1002/mus.28214
Data Access Statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions
Altmetrics provided by Altmetric