Toggle Main Menu Toggle Search

Open Access padlockePrints

Linear Longitudinal Strength Analysis of a Multipurpose Cargo Ship under Combined Bending and Torsional Load

Lookup NU author(s): Joynal Abedin, Dr Francis Franklin

Downloads


Licence

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).


Abstract

Cargo ships with wide hatches usually have thin walls and limited torsional rigidity. Consequently, conducting a comprehensive torsional analysis is important because these loads can exert a significant impact. In this paper, the structural response of a multipurpose cargo ship to combined bending and torsional loads is studied using finite element analysis. The bending and torsional moments are calculated following the rules and standard regulations followed by the classification society. The ship’s 3D finite element model was verified using beam theory and direct calculations. In contrast, the accuracy of torsional stress was confirmed by comparing thin wall girder theory with direct calculation results. This study thoroughly examined the impacts of the still water bending moment, the vertical wave bending moment, and the wave-induced torsional moment on the structural response of ships. Furthermore, it scrutinised the impact of torsion on both open-deck and closed-deck ships. Hull girder normal stresses at midship due to still water and the vertical wave bending moment are shown to contribute to almost 70% of total stress in an inclined condition; stresses resulting from the horizontal wave bending moment contribute nearly 10%, while warping stresses contribute approximately 20% in open-deck ships. It is also shown that torsion has little impact on closed-deck ships. Finally, a buckling analysis was conducted to assess the ship’s buckling criteria, confirming that the linear buckling criteria were satisfied.


Publication metadata

Author(s): Abedin J, Franklin FJ, Ikhtiar Mahmud SM

Publication type: Article

Publication status: Published

Journal: Journal of Marine Science and Engineering

Year: 2024

Volume: 12

Issue: 1

Print publication date: 01/01/2024

Online publication date: 26/12/2023

Acceptance date: 19/12/2023

Date deposited: 02/05/2024

ISSN (electronic): 2077-1312

Publisher: MDPI AG

URL: https://doi.org/10.3390/jmse12010059

DOI: 10.3390/jmse12010059

Data Access Statement: The article includes the data supporting the findings and can be obtained from the corresponding authors upon request.


Altmetrics

Altmetrics provided by Altmetric


Share