Browse by author
Lookup NU author(s): Professor Zhenhong Li
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Distributed scatterer interferometric synthetic aperture radar (DS InSAR) technology has been widely used in various fields. Homogeneous pixel selection is a crucial step in the use of DS InSAR, directly affecting the estimation precision and reliability of subsequent parameter calculations. The existing algorithms for selecting homogeneous pixels have inherent limitations, such as requiring many heterogeneous samples and strict requirements surrounding the required number of synthetic aperture radar (SAR) images. To address these problems, a new sequential selection algorithm for homogeneous pixels is proposed, based on the Baumgartner–Weiss–Schindler (BWS) test algorithm and dynamic interval estimation (DIE) theory. According to Monte Carlo simulation experiments, the average standard deviation (STD) of the mean of the rejection of the BWS-DIE algorithm under six sample conditions is 0.014. Compared with three existing algorithms, including the Kolmogorov‒Smirnov (KS), BWS and fast statistically homogeneous pixel selection (FaSHPS) algorithms, the BWS-DIE algorithm improves homogeneous pixel selection precision by 64.3%, 69.4% and 25.3%, respectively. In the real data experiment, 12 scenes of Advanced Land Observing Satellite-1 Phased Array type L-band Synthetic Aperture Radar (ALOS-1 PALSAR) data from February 2007 to March 2011 were used and the BWS-DIE multitemporal InSAR (MT InSAR) method based on the BWS-DIE algorithm was applied to surface subsidence monitoring in the western mining area of Xuzhou, Jiangsu Province, China. The experimental results show that, compared with the Stanford Method for Persistent Scatterers (StaMPS), the BWS-DIE MT InSAR method improves the ability to monitor the maximum subsidence by 12.3%, increases the point density by 5.7 times and decreases the root mean square error (RMSE) by 50%. In addition, new surface deformation patterns are found in the spatial-temporal evolution. The above experimental results show that the proposed BWS-DIE algorithm exhibits remarkable advantages in selection power and selection precision and is not limited by the number of SAR images. The proposed algorithm can further broaden the application scenarios for DS InSAR and provide high-quality and reliable monitoring data for subsequent scientific research.
Author(s): Chen B, Yang J, Li Z, Yu C, Yu Y, Qin L, Yang Y, Yu H
Publication type: Article
Publication status: Published
Journal: GIScience and Remote Sensing
Year: 2023
Volume: 60
Issue: 1
Online publication date: 17/06/2023
Acceptance date: 22/05/2023
Date deposited: 11/07/2023
ISSN (print): 1548-1603
ISSN (electronic): 1943-7226
Publisher: Taylor and Francis Ltd.
URL: https://doi.org/10.1080/15481603.2023.2218261
DOI: 10.1080/15481603.2023.2218261
Altmetrics provided by Altmetric