Browse by author
Lookup NU author(s): Dr Bo WeiORCiD
This is the authors' accepted manuscript of a conference proceedings (inc. abstract) that has been published in its final definitive form by Institute of Electrical and Electronics Engineers Inc., 2021.
For re-use rights please refer to the publisher's terms and conditions.
© 2021 IEEEUnmanned Aerial Vehicles (UAVs) can collaborate to collect and relay data for ground sensors in remote and hostile areas. In multi-UAV-assisted wireless sensor networks (MA-WSN), the UAVs' movements impact on channel condition and can fail data transmission, this situation along with newly arrived data give rise to buffer overflows at the ground sensors. Thus, scheduling data transmission is of utmost importance in MA-WSN to reduce data packet losses resulting from buffer overflows and channel fading. In this paper, we investigate the optimal ground sensor selection at the UAVs to minimize data packet losses. The optimization problem is formulated as a multi-agent Markov decision process, where network states consist of battery levels and data buffer lengths of the ground sensor, channel conditions, and waypoints of the UAV along the trajectory. In practice, an MA-WSN contains a large number of network states, while the up-to-date knowledge of the network states and other UAVs' sensor selection decisions is not available at each agent. We propose a Multi-UAV Deep Reinforcement Learning based Scheduling Algorithm (MUAIS) to minimize the data packet loss, where the UAVs learn the underlying patterns of the data and energy arrivals at all the ground sensors. Numerical results show that the proposed MUAIS achieves at least 46% and 35% lower packet loss than an optimal solution with single-UAV and an existing non-learning greedy algorithm, respectively.
Author(s): Emami Y, Wei B, Li K, Ni W, Tovar E
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: 2021 International Wireless Communications and Mobile Computing, IWCMC 2021
Year of Conference: 2021
Pages: 669-674
Online publication date: 09/08/2021
Acceptance date: 02/04/2021
Date deposited: 23/06/2023
ISSN: 2376-6492
Publisher: Institute of Electrical and Electronics Engineers Inc.
URL: https://doi.org/10.1109/IWCMC51323.2021.9498726
DOI: 10.1109/IWCMC51323.2021.9498726
Library holdings: Search Newcastle University Library for this item
ISBN: 9781728186160