Browse by author
Lookup NU author(s): Dr Ashur Rafiev, Dr Jordan Morris, Dr Fei Xia, Professor Rishad Shafik, Professor Alex Yakovlev
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The black-box approach towards machine learning models is not helpful for creating fast and efficient implementations. Optimization of these models requires a clear understanding of every aspect of the system, including the architecture, algorithms, and dynamics of the training process. This paper presents a range of visualizations for investigating the dynamics of the Tsetlin Machine, which is a new machine learning algorithm with logic underpinning. These include static visualizations such as architecture and algorithm diagrams and dynamic visualizations such as plotting the evolution of the internal state of the machine. The workflow that supports the visualizations is generalized into an extendable open-source development kit that can be used with future generations of Tsetlin Machines. The example visualization diagrams from the MNIST dataset are discussed from the viewpoint of parallel implementation, hardware acceleration, and opportunities for architectural optimization.
Author(s): Rafiev A, Morris J, Xia F, Shafik R, Yakovlev A, Granmo O-C, Brown AD
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: International Symposium on the Tsetlin Machine (ISTM)
Year of Conference: 2022
Pages: 65-72
Online publication date: 25/10/2022
Acceptance date: 22/04/2022
Date deposited: 13/06/2022
Publisher: IEEE
URL: https://doi.org/10.1109/ISTM54910.2022.00020
DOI: 10.1109/ISTM54910.2022.00020
Library holdings: Search Newcastle University Library for this item
ISBN: 9781665471176