Browse by author
Lookup NU author(s): Dr John EdgarORCiD, Katie Gilmour, Maggie White, Dr Geoffrey AbbottORCiD, Dr Jon Telling
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
The surface of Mars is a dynamic, cold environment where aeolian abrasion leads to the fracturing of silicate minerals which can produce oxidants upon exposure to water. Here we report results of a series of laboratory experiments where the abrasion of sand sized (125 – 300 μm) quartz, labradorite, forsterite and opal were conducted under a simulated Martian atmosphere at a range of temperatures common to Mars' surface (193 to 273 K). Our results suggest that abrasion rates are controlled by temperature; an observation that may have potential for providing insight into Martian paleo-temperatures. On the addition of water, detectable H2O2 was generated in all abraded experiments with crystalline quartz, labradorite and forsterite, but not amorphous opal – supporting previous inferences that mineral crystal structure plays a role in oxidant production. Dissolved Fe concentrations also indicated a strong additional control on net H2O2 production by Fenton reactions. Detectable H2 was similarly measured in abraded experiments with crystalline minerals and not for amorphous opal. Labradorite and forsterite generated minimal H2 and only in more abraded samples, likely due to the reaction of Si• with water. In quartz experiments H2 was only present in samples where a black magnetic trace mineral was also present, and where H2O2 concentrations had been reduced to close to detection. In the quartz samples we infer a mechanism of H2 generation via the previously proposed model of spinel-surface-promoted-electron transfer to water. The presence of H2O2 may exert an additional control on net H2 production rates either directly (via reaction of H2 with OH• and H2O2) or indirectly (by the oxidation of H2 generating sites on mineral surfaces). Overall, our data supports previous inferences that aeolian abrasion can produce additional oxidants within the Martian regolith that can increase the degradation of organic molecules. We further suggest that the apparent control of H2O2 concentrations on net H2 generation in our experiments may help explain some previous apparently contradictory evidence for mineral-water H2 generation at low temperatures.
Author(s): Edgar JO, Gilmour K, White ML, Abbott GD, Telling J
Publication type: Article
Publication status: Published
Journal: Earth and Planetary Science Letters
Year: 2022
Volume: 579
Print publication date: 01/02/2022
Online publication date: 13/01/2022
Acceptance date: 26/12/2021
Date deposited: 19/01/2022
ISSN (print): 0012-821X
ISSN (electronic): 1385-013X
Publisher: Elsevier
URL: https://doi.org/10.1016/j.epsl.2021.117361
DOI: 10.1016/j.epsl.2021.117361
Altmetrics provided by Altmetric