Browse by author
Lookup NU author(s): Professor Sam Wilson
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
© 2018, International Society for Microbial Ecology. Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which are supplied, in part, by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities. We combined in situ sampling using the Environmental Sample Processor and a small-scale mixing experiment with lower euphotic zone water to determine how individual populations respond to mixing. Transcriptional responses were measured using the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) microarray, which targets all three domains of life and viruses. The experiment showed that mixing substantially affects photosynthetic taxa as expected, but surprisingly also showed that populations respond differently to unfiltered deep water which contains particles (organisms and detritus) compared to filtered deep water that only contains nutrients and viruses, pointing to the impact of biological interactions associated with these events. Comparison between experimental and in situ population transcription patterns indicated that manipulated populations can serve as analogs for natural populations, and that natural populations may be frequently or continuously responding to nutrients from deeper waters. Finally, this study also shows that the microarray approach, which is complementary to metatranscriptomic sequencing, is useful for determining the physiological status of in situ microbial communities.
Author(s): Robidart JC, Magasin JD, Shilova IN, Turk-Kubo KA, Wilson ST, Karl DM, Scholin CA, Zehr JP
Publication type: Article
Publication status: Published
Journal: ISME Journal
Year: 2019
Volume: 13
Issue: 2
Pages: 374-387
Print publication date: 01/02/2019
Online publication date: 25/09/2018
Acceptance date: 26/08/2018
ISSN (print): 1751-7362
ISSN (electronic): 1751-7370
Publisher: Springer Nature
URL: https://doi.org/10.1038/s41396-018-0280-0
DOI: 10.1038/s41396-018-0280-0
PubMed id: 30254320
Altmetrics provided by Altmetric