Browse by author
Lookup NU author(s): Chris Thomas, Ben Wetherall, Dr Mark Levasseur, Rebecca Harris, Scott Kerridge, Professor Jonathan HigginsORCiD, Dr Owen Davies, Dr Suzanne MadgwickORCiD
This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.
Author(s): Thomas C, Wetherall B, Levasseur MD, Harris RJ, Kerridge ST, Higgins JMG, Davies OR, Madgwick S
Publication type: Article
Publication status: Published
Journal: Nature Communications
Year: 2021
Volume: 12
Issue: 1
Print publication date: 14/07/2021
Online publication date: 14/07/2021
Acceptance date: 24/06/2021
Date deposited: 27/07/2021
ISSN (electronic): 2041-1723
Publisher: Nature Research
URL: https://doi.org/10.1038/s41467-021-24554-2
DOI: 10.1038/s41467-021-24554-2
PubMed id: 34262048
Altmetrics provided by Altmetric