Browse by author
Lookup NU author(s): Dr Amir Atapour AbarghoueiORCiD
This is the authors' accepted manuscript of a conference proceedings (inc. abstract) that has been published in its final definitive form by IEEE, 2018.
For re-use rights please refer to the publisher's terms and conditions.
Monocular depth estimation using learning-based approaches has become promising in recent years. However, most monocular depth estimators either need to rely on large quantities of ground truth depth data, which is extremely expensive and difficult to obtain, or predict disparity as an intermediary step using a secondary supervisory signal leading to blurring and other artefacts. Training a depth estimation model using pixel-perfect synthetic data can resolve most of these issues but introduces the problem of domain bias. This is the inability to apply a model trained on synthetic data to real-world scenarios. With advances in image style transfer and its connections with domain adaptation (Maximum Mean Discrepancy), we take advantage of style transfer and adversarial training to predict pixel perfect depth from a single real-world color image based on training over a large corpus of synthetic environment data. Experimental results indicate the efficacy of our approach compared to contemporary state-of-the-art techniques.
Author(s): Atapour-Abarghouei A, Breckon TP
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Year of Conference: 2018
Pages: 2800-2810
Online publication date: 17/12/2018
Acceptance date: 19/02/2018
Date deposited: 06/02/2021
ISSN: 2575-7075
Publisher: IEEE
URL: https://doi.org/10.1109/CVPR.2018.00296
DOI: 10.1109/CVPR.2018.00296
Library holdings: Search Newcastle University Library for this item
ISBN: 9781538664209