Toggle Main Menu Toggle Search

Open Access padlockePrints

Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1

Lookup NU author(s): Dr Anja Krippner-Heidenreich

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Max is the central component of the Myc/Max/Mad network of transcription factors that regulate growth, differentiation and apoptosis. Whereas the Myc and Mad genes and proteins are highly regulated, Max expression is constitutive and no post-translational regulation is known. We have found that Max is targeted during Fas-induced apoptosis. Max is first dephosphorylated and subsequently cleaved by caspases. Two specific cleavage sites for caspases in Max were identified, one at IEVE(10) decreasing S and one at SAFD(135) decreasing G near the C-terminus, which are cleaved in vitro by caspase-5 and caspase-7 respectively. Mutational analysis indicates that both sites are also used in vivo. Thus Max represents the first caspase-5 substrate. The unusual cleavage after a glutamic acid residue is observed only with full-length, DNA-binding competent Max protein but not with corresponding peptides, suggesting that structural determinants might be important for this activity. Furthermore, cleavage by caspase-5 is inhibited by the protein kinase CK2-mediated phosphorylation of Max at Ser-11, a previously mapped phosphorylation site in vivo. These findings suggest that Fas-mediated dephosphorylation of Max is required for cleavage by caspase-5. The modifications that occur on Max in response to Fas signalling affect the DNA-binding activity of Max/Max homodimers. Taken together, our findings uncover three distinct processes, namely dephosphorylation and cleavage by caspase-5 and caspase-7, that target Max during Fas-mediated apoptosis, suggesting the regulation of the Myc/Max/Mad network through its central component.


Publication metadata

Author(s): Krippner-Heidenreich A; Talanian RV; Sekul R; Kraft R; Thole H; Ottleben H; Lüscher B

Publication type: Article

Publication status: Published

Journal: Biochemical Journal

Year: 2001

Volume: 358

Issue: 3

Pages: 705

ISSN (print): 0264-6021

ISSN (electronic): 1470-8728

Publisher: Portland Press Ltd.

URL: http://dx.doi.org/10.1042/0264-6021:3580705

DOI: 10.1042/0264-6021:3580705


Altmetrics

Altmetrics provided by Altmetric


Share