Browse by author
Lookup NU author(s): Professor Margaret Carol Bell CBEORCiD, Dr Paul Goodman
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
Access to detailed comparisons of the air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants, in this case, PM2.5 inhaled during rickshaw, bus, metro, non-air-conditioned car, air-conditioned (AC) car and walking journeys through the city of Delhi, India. The data collection was carried out using a portable TSI SidePak Aerosol Monitor AM520, during February 2018. The results demonstrate that rickshaws (266±159 μg/m3) and walking (259±102 μg/m3) modes were exposed to significantly higher mean PM2.5 levels, whereas AC cars (89±30 μg/m3) and the metro (72±11 μg/m3) had the lowest overall exposure rates. Buses (113±14 μg/m3) and non-AC cars (149±13 μg/m3) had average levels of exposure, but open windows and local factors caused surges in PM2.5 for both transport 35 modes. Closed air-conditioned transport modes were shown to be the best modes for avoiding high concentrations of PM2.5, however other factors (e.g. time of the day, window open or closed in the vehicles) affected exposure levels significantly. Overall, the highest total respiratory deposition doses (RDDs) values were estimated as 84.7±33.4 μ g/km, 15.8±9.5 39 μ g/km and 9.7±0.9 μ g/km for walking, rickshaw and non-AC car transported mode of journey, respectively. Unless strong pollution control measures are taken, the high exposure to PM2.5 levels will continue causing serious short-term and long-term health concerns for the Delhi residents. Implementing integrated and intelligent transport systems and educating commuters on ways to reduce exposure levels and impacts on commuter’s health are required.
Author(s): Maji KJ, Namdeo A, Hoban D, Bell M, Goodman P, Nagendra SMS, Barnes J, DeVito L, Hayes E, Longhurst J, Kumar R, Sharma N, Kuppili SK, Alshetty D
Publication type: Article
Publication status: Published
Journal: Atmospheric Pollution Research
Year: 2021
Volume: 12
Issue: 2
Pages: 417-431
Print publication date: 04/02/2021
Online publication date: 10/12/2020
Acceptance date: 04/12/2020
Date deposited: 08/01/2021
ISSN (electronic): 1309-1042
Publisher: Elsevier
URL: https://doi.org/10.1016/j.apr.2020.12.003
DOI: 10.1016/j.apr.2020.12.003
Altmetrics provided by Altmetric