Browse by author
Lookup NU author(s): Estanislao Gavilan Pascual-Ahuir, Professor Andrew Willmott, Dr Miguel Morales MaquedaORCiD
This is the final published version of an article that has been published in its final definitive form by Wiley-Blackwell, 2020.
For re-use rights please refer to the publisher's terms and conditions.
© 2020. American Geophysical Union. All Rights Reserved. The effects of topography on the barotropic circulation in a polar basin are examined analytically and numerically. New approximate linear analytical solutions are presented for steady-state wind and boundary forced barotropic planetary geostrophic circulation in a circular polar basin with a step shelf. The solutions are obtained by retaining the full spherical geometry in the derivation of the forced potential vorticity equation; thereafter the colatitude is fixed in the coefficients of this governing equation. The accuracy of the analytical solutions is evaluated by comparing them with the equivalent numerical solutions obtained using the NEMO modeling system. Subsequently, the impact of a nonuniform width shelf on source-sink-driven circulation is investigated numerically. The equipartition of fluid entering the source strait into cyclonic and anticyclonic shelf currents, exiting the basin at the sink strait, in a basin with a uniform width shelf is shown to be modified when the shelf width varies. In general, the wider shelf supports a current with larger transport, irrespective of the azimuthal extent of the wider shelf. The study concludes with a numerical investigation of wind-driven circulation in a basin with a step shelf, three straits, and a transpolar ridge, a prototype Arctic Ocean simulation. Topographic steering by the ridge supports a transpolar drift current, the magnitude of which depends on the ridge height. Without the ridge, the transpolar drift current is absent and the circulation is confined to gyres on the shelf and in the deep basin.
Author(s): Gavilan Pascual-Ahuir E, Willmott AJ, Morales Maqueda M, Luneva M
Publication type: Article
Publication status: Published
Journal: Journal of Geophysical Research: Oceans
Year: 2020
Volume: 125
Issue: 3
Print publication date: 24/03/2020
Online publication date: 10/03/2020
Acceptance date: 07/03/2020
Date deposited: 06/04/2020
ISSN (print): 2169-9275
ISSN (electronic): 2169-9291
Publisher: Wiley-Blackwell
URL: https://doi.org/10.1029/2019JC015571
DOI: 10.1029/2019JC015571
Altmetrics provided by Altmetric