Browse by author
Lookup NU author(s): Dr Lee HighamORCiD
This is the authors' accepted manuscript of an article that has been published in its final definitive form by American Chemical Society, 2020.
For re-use rights please refer to the publisher's terms and conditions.
Reaction of [ReOCl3(PPh3)2] or [ReO2I(PPh3)2] with 2,2'-diphenylglycine (dpgH2) in refluxing ethanol afforded the air-stable complex [ReO(dpgH)(dpg)(PPh3)] (1). Treatment of [ReO(OEt)I2(PPh3)2] with 1,2,3-triaza-7-phosphaadamantane (PTA) afforded the complex [ReO(OEt)I2(PTA)2] (2). Reaction of [ReOI2(PTA)3] with dpgH2 led to the isolation of the complex [Re(NCPh2)I2(PTA)3]·0.5EtOH (3·0.5EtOH). A similar reaction but using [ReOX2(PTA)3] (X = Cl, Br) resulted in the analogous halide complexes [Re(NCPh2)Cl2(PTA)3]·2EtOH (4·2EtOH) and [Re(NCPh2)(PTA)3Br2]·1.6EtOH (5·1.6EtOH). Using benzilic acid (2,2'-diphenylglycolic acid, benzH) with 2 afforded the complex [ReO(benz)2(PTA)][PTAH]·EtOH (6·EtOH). The potential for the formation of complexes using radioisotopes with relatively short half-lives suitable for nuclear medicine applications by developing conditions for [Re(NCPh2)(dpg)I(PTA)3] (7)[ReO4]- in a 4 h time scale was investigated. A procedure for the technetium analog of complex [Re(NCPh2)I2(PTA)3] (3) from 99mTc[TcO4]- was then investigated. The molecular structures of 1-7 are reported; complexes 3-7 have been studied using in vitro cell assays (HeLa, HCT116, HT-29, and HEK 293) and were found to have IC50 values in the range of 29-1858 μM.
Author(s): Alshamrani AF, Prior TJ, Burke BP, Roberts DP, Archibald SJ, Higham LJ, Stasiuk G, Redshaw C
Publication type: Article
Publication status: Published
Journal: Inorganic Chemistry
Year: 2020
Volume: 59
Issue: 4
Pages: 2367-2378
Print publication date: 17/02/2020
Online publication date: 27/01/2020
Acceptance date: 05/11/2019
Date deposited: 29/04/2020
ISSN (print): 0020-1669
ISSN (electronic): 1520-510X
Publisher: American Chemical Society
URL: https://doi.org/10.1021/acs.inorgchem.9b03239
DOI: 10.1021/acs.inorgchem.9b03239
PubMed id: 31984731
Altmetrics provided by Altmetric