Toggle Main Menu Toggle Search

Open Access padlockePrints

Photometric detection of internal gravity waves in upper main-sequence stars I. Methodology and application to CoRoT targets

Lookup NU author(s): Dr Dominic BowmanORCiD, Professor Tamara Rogers, Dr Philipp EdelmannORCiD

Downloads


Licence

This is the final published version of an article that has been published in its final definitive form by EDP Sciences, 2019.

For re-use rights please refer to the publisher's terms and conditions.


Abstract

Context. Main sequence stars with a convective core are predicted to stochastically excite internal gravity waves (IGWs), which effectively transport angular momentum throughout the stellar interior and explain the observed near-uniform interior rotation rates of intermediate-mass stars. However, there are few detections of IGWs, and fewer still made using photometry, with more detections needed to constrain numerical simulations. Aims. We aim to formalise the detection and characterisation of IGWs in photometric observations of stars born with convective cores (M ≳ 1.5 M) and parameterise the low-frequency power excess caused by IGWs. Methods. Using the most recent CoRoT light curves for a sample of O, B, A and F stars, we parameterised the morphology of the flux contribution of IGWs in Fourier space using an MCMC numerical scheme within a Bayesian framework. We compared this to predictions from IGW numerical simulations and investigated how the observed morphology changes as a function of stellar parameters. Results. We demonstrate that a common morphology for the low-frequency power excess is observed in early-type stars observed by CoRoT. Our study shows that a background frequency-dependent source of astrophysical signal is common, which we interpret as IGWs. We provide constraints on the amplitudes of IGWs and the shape of their detected frequency spectrum across a range of mass, which is the first ensemble study of stochastic variability in such a diverse sample of stars. Conclusions. The evidence of a low-frequency power excess across a wide mass range supports the interpretation of IGWs in photometry of O, B, A and F stars. We also discuss the prospects of observing hundreds of massive stars with the Transiting Exoplanet Survey Satellite (TESS) in the near future.


Publication metadata

Author(s): Bowman DM, Aerts C, Johnston C, Pedersen MG, Rogers TM, Edelmann PVF, Simón-Díaz S, Van Reeth T, Buysschaert B, Tkachenko A, Triana SA

Publication type: Article

Publication status: Published

Journal: Astronomy & Astrophysics

Year: 2019

Volume: 621

Online publication date: 21/01/2019

Acceptance date: 16/11/2018

Date deposited: 01/02/2019

ISSN (print): 0004-6361

ISSN (electronic): 1432-0746

Publisher: EDP Sciences

URL: https://doi.org/10.1051/0004-6361/201833662

DOI: 10.1051/0004-6361/201833662


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
670519
AYA2015-68012-C2-1
DNRF106
NNX17AB92G
SEV-2015-054
ProID2017010115
ST/L005549/1STFC (formerly PPARC)

Share