Browse by author
Lookup NU author(s): Samet Şahin, Professor Eileen Yu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
© 2018 In enzymatic fuel cells (EnFCs), hydrogen peroxide formation is one of the main problems when enzymes, such as, glucose oxidase (GOx) is used due to the conversion of oxygen to hydrogen peroxide in the catalytic reaction. To address this problem, we here report the first demonstration of an EnFC using a variant of pyranose-2-oxidase (P2O-T169G) which has been shown to have low activity towards oxygen. A simple and biocompatible immobilisation approach incorporating multi-walled-carbon nanotubes within ferrocene (Fc)-Nafion film was implemented to construct EnFCs. Successful immobilisation of the enzymes was demonstrated showing 3.2 and 1.7-fold higher current than when P2O-T169G and GOx were used in solution, respectively. P2O-T169G showed 25% higher power output (maximum power density value of 8.45 ± 1.6 μW cm−2) and better stability than GOx in aerated glucose solutions. P2O-T169G maintained > 70% of its initial current whereas GOx lost activity > 90% during the first hour of 12 h operation at 0.15 V (vs Ag/Ag+). A different fuel cell configuration using gas-diffusion cathode and carbon paper electrodes were used to improve the power output of the fuel cell to 29.8 ± 6.1 µW cm−2. This study suggests that P2O-T169G with low oxygen activity could be a promising anode biocatalyst for EnFC applications.
Author(s): Sahin S, Wongnate T, Chuaboon L, Chaiyen P, Yu EH
Publication type: Article
Publication status: Published
Journal: Biosensors and Bioelectronics
Year: 2018
Volume: 107
Pages: 17-25
Print publication date: 01/06/2018
Online publication date: 01/02/2018
Acceptance date: 30/01/2018
Date deposited: 14/04/2018
ISSN (print): 0956-5663
ISSN (electronic): 1873-4235
Publisher: Elsevier Ltd
URL: https://doi.org/10.1016/j.bios.2018.01.065
DOI: 10.1016/j.bios.2018.01.065
Data Access Statement: http://dx.doi.org/10.17634/154300-78
Altmetrics provided by Altmetric