Browse by author
Lookup NU author(s): Dr Yiji LuORCiD, Professor Tony Roskilly
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND).
A double-tank hybrid pneumatic engine system, with one low pressure tank and one high pressure tank has been proposed to improve the energy conversion efficiency and auxiliary braking power output of regenerative braking of vehicles. The performance of three ideal compression cycle scenarios for the double-tank system has been investigated and the results are compared with that of ideal one-tank scenario in order to identify the optimal compression cycle under different primary performance requirements. Results indicate the maximum brake mean effective pressure can be improved to not over 0.2 MPa less than the HP tank pressure and the highest improvement of total air mass recovered can reach over 40% utilising the double-tank scenarios. Scenario 3 performs the best at the braking power output ability, while scenario 4 shows the greatest high pressure compressed air recovery potential. Considering about the LP tank air sources, scenario 2 is the only one that can operate independently without other air complements, which also performs the best at the energy conversion efficiency among the three double-tank scenarios.
Author(s): Dou WB, Li DF, Lu YJ, Yu XL, Roskilly AP
Publication type: Article
Publication status: Published
Journal: Energy Procedia
Year: 2017
Volume: 142
Pages: 1388-1394
Print publication date: 01/12/2017
Online publication date: 31/01/2018
Acceptance date: 02/04/2016
Date deposited: 09/02/2018
ISSN (electronic): 1876-6102
Publisher: Elsevier BV
URL: https://doi.org/10.1016/j.egypro.2017.12.524
DOI: 10.1016/j.egypro.2017.12.524
Notes: 9th International Conference on Applied Energy
Altmetrics provided by Altmetric