Browse by author
Lookup NU author(s): Professor Mark Cunningham, Professor Miles Whittington
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Although there is a great multiplicity of normal brain electrical activities, one can observe defined, relatively abrupt, transitions between apparently normal rhythms and clearly abnormal, higher amplitude, "epileptic" signals; transitions occur over tens of ms to many seconds. Transitional activity typically consists of low-amplitude very fast oscillations (VFO). Examination of this VFO provides insight into system parameters that differentiate the "normal" from the "epileptic." Remarkably, VFO in vitro is generated by principal neuron gap junctions, and occurs readily when chemical synapses are suppressed, tissue pH is elevated, and [Ca2+]o is low. Because VFO originates in principal cell axons that fire at high frequencies, excitatory synapses may experience short-term plasticity. If the latter takes the form of potentiation of recurrent synapses on principal cells, and depression of these on inhibitory interneurons, then the stage is set for synchronized bursting - if [Ca2+]o recovers sufficiently. Our hypothesis can be tested (in part) in patients, once it is possible to measure brain tissue parameters (pH, [Ca2+]o) simultaneously with ECoG. © 2014 Springer Science+Business Media Dordrecht.
Author(s): Traub RD, Cunningham MO, Whittington MA
Publication type: Book Chapter
Publication status: Published
Book Title: Issues in Clinical Epileptology: A View from the Bench
Year: 2014
Volume: 813
Pages: 71-80
Print publication date: 11/07/2014
Online publication date: 14/05/2014
Acceptance date: 01/01/1900
Series Title: Advances in Experimental Medicine and Biology
Publisher: Springer
Place Published: Dordrecht
URL: https://doi.org/10.1007/978-94-017-8914-1_6
DOI: 10.1007/978-94-017-8914-1_6
PubMed id: 25012368
Library holdings: Search Newcastle University Library for this item
ISBN: 9789401789134