Toggle Main Menu Toggle Search

Open Access padlockePrints

Treatment for osteoporosis in people with beta-thalassaemia

Lookup NU author(s): Dr Amit Bhardwaj, Dr Kye Mon Min Swe

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

BackgroundOsteoporosis is a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis represents an important cause of morbidity in people with beta-thalassaemia and its pathogenesis is multifactorial. Factors include bone marrow expansion due to ineffective erythropoiesis, resulting in reduced trabecular bone tissue with cortical thinning; endocrine dysfunction secondary to excessive iron loading, leading to increased bone turnover; and lastly, a predisposition to physical inactivity due to disease complications with a subsequent reduction in optimal bone mineralization.A number of therapeutic strategies have been applied to treat osteoporosis in people with beta-thalassaemia, which include bisphosphonates, with or without, hormone replacement therapy. There are various forms of bisphosphonates, such as clodronate, pamidronate, alendronate and zoledronic acid. Other treatments include calcitonin, calcium, zinc supplementation, hydroxyurea and hormone replacement therapy for preventing hypogonadism.ObjectivesTo review the evidence on the efficacy and safety of treatment for osteoporosis in people with beta-thalassaemia.Search methodsWe searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of most recent search: 04 February 2016.Selection criteriaRandomised, placebo-controlled trials in people with thalassaemia with a bone mineral density z score of less than -2 standard deviations for: children less than 15 years old; adult males (15 to 50 years old); and all pre-menopausal females above 15 years and a bone mineral density t score of less than -2.5 standard deviations for post-menopausal females and males above 50 years old.Data collection and analysisTwo review authors assessed the eligibility and risk of bias of the included trials, extracted and analysed data and completed the review. We summarised results using risk ratios or rate ratios for dichotomous data and mean differences for continuous data. We combined trial results where appropriate.Main resultsFour trials (with 211 participants) were included; three trials investigated the effect of bisphosphonate therapies and one trial investigated the effect of zinc supplementation. Only one trial was judged to be of good quality (low risk of bias); the remaining trials had a high or unclear risk of bias in at least one key domain.One trial (data not available for analysis) assessing the effect of neridronate (118 participants) reported significant increases in favour of the bisphosphonate group for bone mineral density at the lumbar spine and hip at both six and 12 months. For the femoral neck, a significant difference was noted at 12 months only. A further trial (25 participants) assessed the effect of alendronate and clodronate and found that after two years, bone mineral density increased significantly in the alendronate and clodronate groups as compared to placebo at the lumbar spine, mean difference 0.14 g/cm(2) (95% confidence interval 0.05 to 0.22) and at the femoral neck, mean difference 0.40 g/cm(2) (95% confidence interval 0.22 to 0.57). One 12-month trial (26 participants) assessed the effects of different doses of pamidronate (30 mg versus 60 mg) and found a significant difference in bone mineral density in favour of the 60 mg dose at the lumbar spine and forearm, mean difference 0.43 g/cm(2) (95% CI 0.10 to 0.76), mean difference 0.87 g/cm(2) (95% CI 0.23 to 1.51), respectively, but not at the femoral neck.In a zinc sulphate supplementation trial (42 participants), bone mineral density increased significantly compared to placebo at the lumbar spine after 12 months (37 participants), mean difference 0.15 g/cm


Publication metadata

Author(s): Bhardwaj A, Swe KMM, Sinha NK, Osunkwo I

Publication type: Review

Publication status: Published

Journal: Cochrane Database of Systematic Reviews

Year: 2016

Issue: 3

Online publication date: 10/03/2016

Acceptance date: 01/01/1900

ISSN (print): 1469-493X

ISSN (electronic): 1361-6137

Publisher: WILEY-BLACKWELL

URL: http://dx.doi.org/10.1002/14651858.CD010429.pub2

DOI: 10.1002/14651858.CD010429.pub2


Share