Browse by author
Lookup NU author(s): Dr Andreas FinkelmeyerORCiD, Felix Schneider
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Pavlovian fear conditioning has been thoroughly studied in the visual, auditory and somatosensory domain, but evidence is scarce with regard to the chemosensory modality. Under the assumption that Pavlovian conditioning relies on the supra-modal mechanism of salience attribution, the present study was set out to attest the existence of chemosensory aversive conditioning in humans as a specific instance of salience attribution. fMRI was performed in 29 healthy subjects during a differential aversive conditioning paradigm. Two odors (rose, vanillin) served as conditioned stimuli (CS), one of which (CS +) was intermittently coupled with intranasally administered CO2. On the neural level, a robust differential response to the CS+ emerged in frontal, temporal, occipito-parietal and subcortical brain regions, including the amygdala. These changes were paralleled by the development of a CS+-specific connectivity profile of the anterior midcingulate cortex (aMCC), which is a key structure for processing salience information in order to guide adaptive response selection. Increased coupling could be found between key nodes of the salience network (anterior insula, neo-cerebellum) and sensorimotor areas, representing putative input and output structures of the aMCC for exerting adaptive motor control. In contrast, behavioral and skin conductance responses did not show significant effects of conditioning, which has been attributed to contingency unawareness. These findings imply substantial similarities of conditioning involving chemosensory and other sensory modalities, and suggest that salience attribution and adaptive control represent a general, modality-independent principle underlying Pavlovian conditioning. (C) 2013 Elsevier Inc. All rights reserved.
Author(s): Moessnang C, Pauly K, Kellermann T, Kramer J, Finkelmeyer A, Hummel T, Siegel SJ, Schneider F, Habel U
Publication type: Article
Publication status: Published
Journal: NeuroImage
Year: 2013
Volume: 77
Pages: 93-104
Print publication date: 15/08/2013
Online publication date: 02/04/2013
ISSN (print): 1053-8119
Publisher: Elsevier
URL: http://dx.doi.org/10.1016/j.neuroimage.2013.03.049
DOI: 10.1016/j.neuroimage.2013.03.049
Altmetrics provided by Altmetric