Browse by author
Lookup NU author(s): Dr Tom Williams, Emeritus Professor T. Martin Embley FMedSci FRSORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.
Author(s): Gubry-Rangin C, Kratsch C, Williams TA, McHardy AC, Embley TM, Prosser JI, Macqueen DJ
Publication type: Article
Publication status: Published
Journal: Proceedings of the National Academy of Sciences of the United States of America
Year: 2015
Volume: 112
Issue: 30
Pages: 9370-9375
Print publication date: 28/07/2015
Online publication date: 13/07/2015
Acceptance date: 01/01/1900
ISSN (print): 0027-8424
Publisher: National Academy of Sciences
URL: http://dx.doi.org/10.1073/pnas.1419329112
DOI: 10.1073/pnas.1419329112
Altmetrics provided by Altmetric