Browse by author
Lookup NU author(s): Dr Bo Wang, Dr Jian Shi
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
In this article, we propose a generalized Gaussian process concurrent regression model for functional data, where the functional response variable has a binomial, Poisson, or other non-Gaussian distribution from an exponential family, while the covariates are mixed functional and scalar variables. The proposed model offers a nonparametric generalized concurrent regression method for functional data with multidimensional covariates, and provides a natural framework on modeling common mean structure and covariance structure simultaneously for repeatedly observed functional data. The mean structure provides overall information about the observations, while the covariance structure can be used to catch up the characteristic of each individual batch. The prior specification of covariance kernel enables us to accommodate a wide class of nonlinear models. The definition of the model, the inference, and the implementation as well as its asymptotic properties are discussed. Several numerical examples with different non-Gaussian response variables are presented. Some technical details and more numerical examples as well as an extension of the model are provided as supplementary materials.
Author(s): Wang B, Shi JQ
Publication type: Article
Publication status: Published
Journal: Journal of the American Statistical Association
Year: 2014
Volume: 109
Issue: 507
Pages: 1123-1133
Print publication date: 01/01/2014
Acceptance date: 07/03/2014
ISSN (print): 0162-1459
ISSN (electronic): 1537-274X
Publisher: American Statistical Association
URL: http://dx.doi.org/10.1080/01621459.2014.889021
DOI: 10.1080/01621459.2014.889021
Altmetrics provided by Altmetric