Browse by author
Lookup NU author(s): Dr Amy Guo, Professor Phil BlytheORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The techniques to forecast available parking space (APS) are indispensable components for parking guidance systems (PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents (largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network (WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1 (in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method.
Author(s): Ji Y, Tang D, Guo W, Blythe PT, Wang W
Publication type: Article
Publication status: Published
Journal: Journal of Central South University
Year: 2014
Volume: 21
Issue: 4
Pages: 1624-1632
Print publication date: 01/04/2014
ISSN (print): 2095-2899
ISSN (electronic): 2227-5223
Publisher: Central South University
URL: http://dx.doi.org/10.1007/s11771-014-2104-3
DOI: 10.1007/s11771-014-2104-3
Altmetrics provided by Altmetric