Browse by author
Lookup NU author(s): Dr Hugo Hiden, Dr Simon Woodman, Professor Paul WatsonORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The ability to accurately predict the performance of soft- ware components executing within a Cloud environment is an area of intense interest to many researchers. The avail- ability of an accurate prediction of the time taken for a piece of code to execute would be beneficial for both planning and cost optimisation purposes. To that end, this paper proposes a performance data capture and modelling architecture that can be used to generate models of code execution time that are dynamically updated as additional performance data is collected. To demonstrate the utility of this approach, the workflow engine within the e-Science Central Cloud platform has been instrumented to capture execution data with a view to generating predictive models of workflow performance. Models have been generated for both simple and more com- plex workflow components operating on local hardware and within a virtualised Cloud environment and the ability to generate accurate performance predictions given a number of caveats is demonstrated.
Author(s): Hiden H, Woodman S, Watson P
Publication type: Conference Proceedings (inc. Abstract)
Publication status: Published
Conference Name: WORKS '13 Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science
Year of Conference: 2013
Pages: 77-87
Date deposited: 10/04/2014
ISSN: 9781450325028
Publisher: ACM Digital Library
URL: http://dx.doi.org/10.1145/2534248.2534256
DOI: 10.1145/2534248.2534256