Browse by author
Lookup NU author(s): Dr Anita Roopun, Dr Fiona LeBeauORCiD, Professor Mark Cunningham, Professor Miles Whittington
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention-processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12-80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex.
Author(s): Roopun AK, LeBeau FEN, Rammell J, Cunningham MO, Traub RD, Whittington MA
Publication type: Article
Publication status: Published
Journal: Frontiers in Neural Circuits
Year: 2010
Volume: 4
Issue: 1
Pages: 8
Print publication date: 22/03/2010
ISSN (electronic): 1662-5110
Publisher: Frontiers Research Foundation
URL: http://dx.doi.org/10.3389/fncir.2010.00008
DOI: 10.3389/fncir.2010.00008
Altmetrics provided by Altmetric