Toggle Main Menu Toggle Search

Open Access padlockePrints

Optimum Flux Distribution with Harmonic Injection for a Multiphase Induction Machine Using Genetic Algorithms

Lookup NU author(s): Dr Shady Gadoue

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

This paper investigates a nontriplen multiphase induction machine when fed with harmonic current injection with different sequences for an open loop optimized flux distribution that produce a quasi-square wave in the machine air gap. This maximizes iron utilization, giving more torque per ampere. The relation between the fundamental and other harmonic components can be determined for the best iron utilization using genetic algorithms where optimum flux distribution with different injected harmonic order can be obtained. This means, the target is to optimize the flux distribution during no-load to determine the optimum constants that guarantee approximate square wave air-gap flux. The paper focuses on an 11-phase machine that can be excited with harmonics up to the ninth. The technique is assessed using both winding function and finite element analysis methods. The prototype machine is fed from an 11-phase inverter. The system DSP control using genetic algorithm produces an optimum flux distribution by using winding sequence and harmonic current injection. Simulation results for the 11-phase dq model and prototype drive experimental results are presented.


Publication metadata

Author(s): Abdel-Khalik A, Mostafa Gadoue S, Massoud MI, Williams BW

Publication type: Article

Publication status: Published

Journal: IEEE Transactions on Energy Conversion

Year: 2011

Volume: 26

Issue: 2

Pages: 501-512

Print publication date: 06/01/2011

ISSN (print): 0885-8969

ISSN (electronic): 1558-0059

Publisher: IEEE

URL: http://dx.doi.org/10.1109/TEC.2010.2093139

DOI: 10.1109/TEC.2010.2093139


Altmetrics

Altmetrics provided by Altmetric


Share