Toggle Main Menu Toggle Search

Open Access padlockePrints

Rigorous pulse detection from full-waveform airborne laser scanning data

Lookup NU author(s): Yu-Ching Lin, Professor Jon MillsORCiD, Dr Sarah Smith-Voysey

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Current discrete airborne laser scanning (ALS) systems suffer from a limited number of multiple returns and the loss of information about range estimation. To improve range resolution and accuracy, latest generation small-footprint, full-waveform laser scanning data were investigated and an approach developed to determine the number of targets within complex waveforms. The approach, termed rigorous Gaussian detection (RGD), is based on the popular Gaussian decomposition method but is implemented with rigorous estimates of initial values and a sophisticated iteration procedure. Second derivatives of waveforms and the number of samples on the edges of visible peaks were analysed to find overlapping targets. Weak pulses were detected where the residuals of Gaussian fitting were high and corresponding pulse widths were close to that of the transmitted pulse. The performance was compared with two other pulse detection techniques from commercial software, namely the centre of gravity (COG) method and the Gaussian pulse fitting (GPF) method with the Levenberg-Marquardt iterative algorithm. The results proved that the developed pulse detection method resolved multi-targets well. For example, in a sample of 201 dual-target waveforms, the RGD method correctly detected two targets in all the samples, considerably outperforming the COG and GPF methods, which achieved 57% and 67% success rates, respectively. When measuring the target heights using the different methods, the RGD method, with a root mean square error (RMSE) of 0.06 m, proved twice as accurate as the next best method, COG. The developed approach therefore compares favourably against the two commercial pulse detection methods considered, where their failure to detect hidden targets within complex waveforms and weak pulses resulted in a decrease of multi-target resolution, unreliable three-dimensional (3D) points, and also the loss of information from weak pulses.


Publication metadata

Author(s): Lin YC, Mills JP, Smith-Voysey S

Publication type: Article

Publication status: Published

Journal: International Journal of Remote Sensing

Year: 2010

Volume: 31

Issue: 5

Pages: 1303-1324

Print publication date: 01/02/2010

ISSN (print): 0143-1161

ISSN (electronic): 1366-5901

Publisher: Taylor & Francis Ltd.

URL: http://dx.doi.org/10.1080/01431160903380599

DOI: 10.1080/01431160903380599


Altmetrics

Altmetrics provided by Altmetric


Share