Browse by author
Lookup NU author(s): Professor Heather Cordell
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Linkage and association studies in complex diseases are used to identify and fine map disease loci. The process of identifying the aetiological polymorphism, the molecular variant responsible for the linkage and association of the chromosome region with disease, is complicated by the low penetrance of the disease variant, the linkage disequilibrium between physically-linked polymorphic markers flanking the disease variant, and the possibility that more than one polymorphism in the most associated region is aetiological. It is important to be able to detect additional disease determinants in a region containing a cluster of genes, such as the major histocompatibility complex (MHC) region on chromosome 6p21. Some methods have been developed for detection of additional variants, such as the Haplotype Method, Marker Association Segregation Chi-squares (MASC) Method, and the Homozygous Parent Test. Here, the Extended Transmission/Disequilibrium Test is adapted to test for association conditional on a previously associated locus. This test is referred to as the Conditional Extended TDT (CETDT). We discuss the advantages of the CETDT compared to existing methods and, using simulated data, investigate the effect of polymorphism, inheritance, and linkage disequilibrium on the CETDT.
Author(s): Koeleman BP, Dudbridge F, Cordell HJ, Todd JA
Publication type: Article
Publication status: Published
Journal: Annals of Human Genetics
Year: 2000
Volume: 64
Issue: Pt 3
Pages: 207-213
ISSN (print): 0003-4800
ISSN (electronic): 1469-1809
Publisher: Wiley-Blackwell
URL: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=57913
Notes: Journal Article Review